###############################################################
#Configuration file for the experiments
################################################################
#Multi-label data?
multi-label = 1
#Number of initial generated rules
number initial rules = 500
#Number of runs
number of runs = 10
#Number of levels
number of levels = 1
#Elitism
elitism number = 1
#Mutation
mutation rate = 0.4
#Probability of using a clausule in initialization
probability using clausule = 0.55
#Crossover
crossover rate = 0.9
#Paths datasets
path datasets = Datasets/
#Relational tests (0 - no relational tests / 1 - mix of propositional and relational tests)
relational tests = 0
#Datasets
dataset train = flags.train.arff
dataset valid = none
dataset test = flags.test.arff
#Target positions
target positions = [20-26]
#hierarchy type = DAG, Tree or Flat
hierarchy type = Flat
#Number of generation
number of generations = 300
#Size of tournament
size tournament = 2
#Maximun number of uncovered examples
max uncovered examples = 10
#Minimum covered examples per rule
min covered examples per rule = 5
#Maximum covered examples per rule
max covered examples per rule = 100
#Fitness function to use (VG, AUPRC, AUPRCxCoveredInstances, VGxCoveredInstances, VGxAUPRC)
fitness function = AUPRCxCoveredInstances
# Perform local search (1-Yes / 0-No)
local search = 0
# Crossocer type (1 - uniform with distance / 2 - normal uniform crossover)
crossover type = 1
#Threshold values to build PR curves
threshold values = [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100]