

Perceptron

- □ A primeira rede neural descrita algoritmicamente
- □ Criado por Frank Rosenblatt, um psicólogo, e inspirou engenheiros, físicos e matemáticos a estudarem redes neurais
- O modelo proposto por Rosenblatt em 1958 como publicado em seu artigo, é válido até hoje

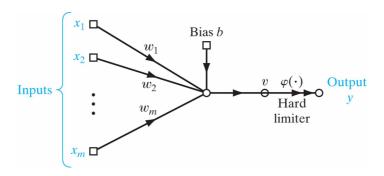
Perceptron

- A forma mais simples de um rede neural utilizada para classificar padrões ditos linearmente separáveis
- Consiste de um único neurônio com pesos sinápticos ajustáveis e bias
- Rosenblatt desenvolveu o algoritmo para ajustar os parâmetros livres
- Rosenblatt provou que se os exemplos utilizados no treino pertencerem a classes linearmente separáveis, o algoritmo converge, posicionando um hiperplano entre as duas classes

2

Perceptron

 □ O Perceptron de Rosenblatt utiliza o modelo de neurônio de McCulloch-Pitts



Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 All rights reserved

Perceptron

- O Perceptron de Rosenblatt utiliza o modelo de neurônio de McCulloch-Pitts
 - \square Os pesos sinápticos são denotados por w_1 , w_2 , ..., w_m
 - \square As entradas são denotadas por x_1, x_2, \ldots, x_m
 - O bias é denotado por *b*

$$v = \sum_{i=1}^{m} w_i x_i + b$$

5

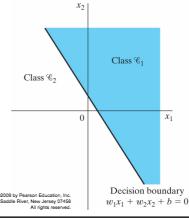
Perceptron

- \square O objetivo do Perceptron é classificar corretamente um conjunto de exemplos denotados por x_1 , x_2 , ..., x_m em uma de umas classes \mathscr{C}_1 ou \mathscr{C}_2
- \square O ponto representado por x_1 , x_2 , ..., x_m é classificado como \mathscr{C}_1 se a saída y for +1 e como \mathscr{C}_2 se a saída y for -1. Há duas regiões separadas por um **hiperplano**:

$$\sum_{i=1}^{m} w_i x_i + b = 0$$

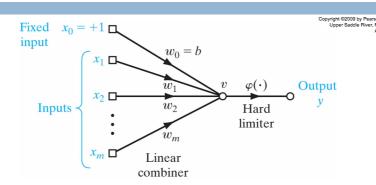
Perceptron

- □ llustração de um hiperplano (linha reta) como fronteira de decisão para um problema de classificação com duas dimensões e duas classes
- Os pesos sinápticos são ajustados em um processo iterativo utilizando o algoritmo de convergência do Perceptron



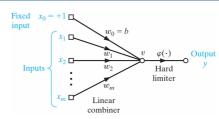
7

Teorema de Convergência do Perceptron



- \Box O bias b(n) é tratado como um peso associado a uma entrada +1
- □ Vetor de entrada: $\mathbf{x}(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$
- □ Vetor de pesos: $\mathbf{w}(n) = [b, w_1(n), w_2(n), \dots, w_m(n)]^T$

Teorema de Convergência do Perceptron

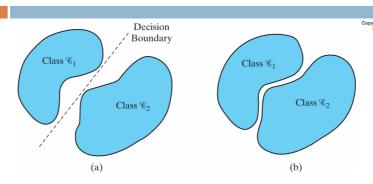


- \Box O bias b(n) é tratado como um peso associado a uma entrada +1
- □ Vetor de entrada: $\mathbf{x}(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$
- □ Vetor de pesos: $\mathbf{w}(n) = [b, w_1(n), w_2(n), \dots, w_m(n)]^T$

$$v(n) = \sum_{i=0}^{m} w_i(n) x_i(n) = \mathbf{w}^{T}(n) \mathbf{x}(n)$$

9

Teorema de Convergência do Perceptron



- $\mathbf{w}^T \mathbf{x} = 0$ define um hiperplano de separação
- ldot $\mathbf{w}^{\scriptscriptstyle T}\mathbf{x}$ > 0 para todo vetor \mathbf{x} pertencente à classe \mathscr{C}_1
- $\mathbf{w}^T\mathbf{x} \leq 0$ para todo vetor \mathbf{x} pertencente à classe \mathscr{C}_2

Teorema de Convergência do Perceptron

- □ Se o n-ésimo vetor $\mathbf{x}(n)$ é corretamente classificado pelo vetor $\mathbf{w}(n)$ na n-ésima iteração do algoritmo, nenhuma correção é feita no vetor de pesos
 - $\mathbf{w}(n+1) = \mathbf{w}(n)$ se $\mathbf{w}^T\mathbf{x}(n) > 0$ e $\mathbf{x}(n)$ pertence a classe \mathscr{C}_1
 - $\mathbf{w}(n+1) = \mathbf{w}(n)$ se $\mathbf{w}^T\mathbf{x}(n) \leq 0 \in \mathbf{x}(n)$ pertence a classe \mathscr{C}_2
- □ Caso contrário, o vetor de pesos é atualizado
 - $\mathbf{w}(n+1) = \mathbf{w}(n) \eta(n)\mathbf{x}(n)$ se $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ e $\mathbf{x}(n)$ pertence a classe \mathscr{C}_{2}
 - $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n)$ se $\mathbf{w}^{T}(n)\mathbf{x}(n) \le 0$ e $\mathbf{x}(n)$ pertence a classe \mathcal{C}_{1}

11

Teorema de Convergência do Perceptron

 $\hfill\Box$ A saída do neurônio é computada utilizando a função sinal $sgn(\cdot)$

$$sgn(v) = \begin{cases} +1 \text{ se } v > 0\\ -1 \text{ se } v < 0 \end{cases}$$

 \square Expressamos a saída y(n) de maneira compacta:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

Teorema de Convergência do Perceptron

□ No algoritmo de convergência, foi utilizada também a resposta desejada d(n) para cada exemplo:

$$d(n) = \begin{cases} +1 \text{ se } \mathbf{x}(n) \text{ pertence à classe } \mathscr{C}_1 \\ -1 \text{ se } \mathbf{x}(n) \text{ pertence à classe } \mathscr{C}_2 \end{cases}$$

□ A adaptação dos pesos ocorre de maneira elegante:

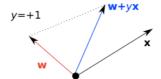
$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta [d(n) - y(n)] \mathbf{x}(n)$$

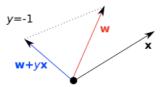
- $\ \square \ \eta$: taxa de aprendizado
- $\Box d(n) y(n)$: sinal de erro

13

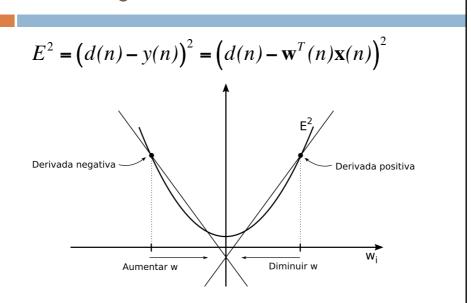
Teorema de Convergência do Perceptron

- \square Os pesos são corrigidos de acordo com o valor do produto interno $\mathbf{w}^{\mathrm{T}}(n) \mathbf{x}(n)$
- Se o produto interno, na iteração n, tiver um sinal errado, os pesos devem ser ajustados para classificar o exemplo corretamente na iteração n+1





Como chegamos nisso?

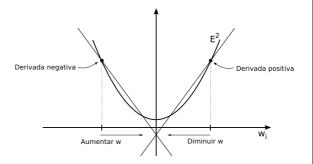


15

Como chegamos nisso?

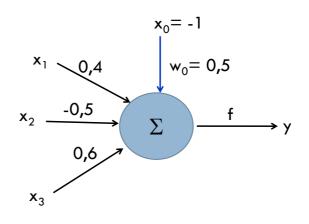
□ Gradiente Descendente: $w_i(n+1) = w_i(n) - \eta \frac{dE^2}{dw_i}$

$$\frac{dE^2}{dw_i} = \frac{d\left(d(n) - y(n)\right)^2}{dw_i(n)} = 2 \times \left(d(n) - \mathbf{w}^T(n)\mathbf{x}(n)\right) \times -x_i$$



Exemplo

Dado	X1	X2	x3	Classe
E1	0	0	1	-1
E2	1	0	0	1



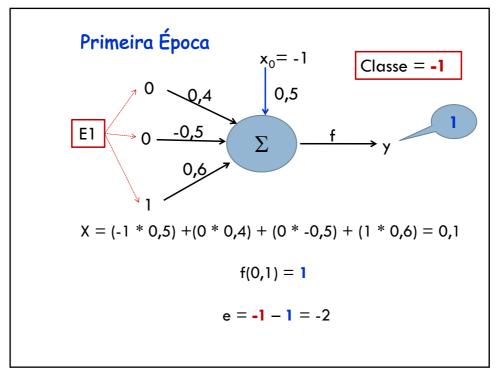
17

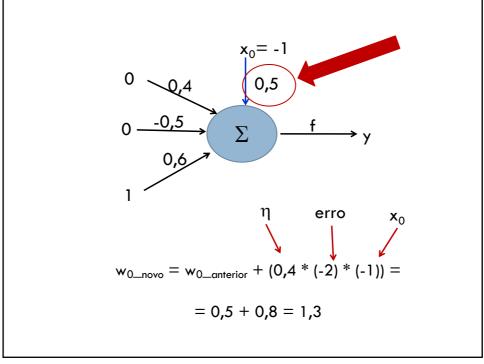
Exemplo

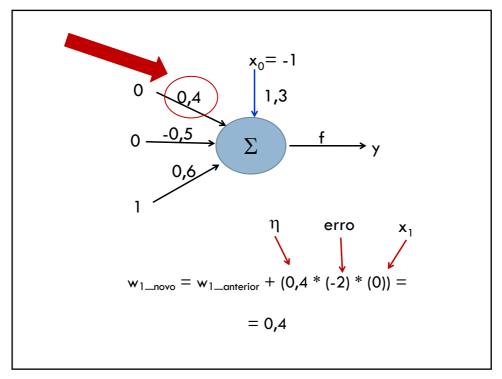
Dado	x1	x2	x3	Classe
El	0	0	1	-1
E2	1	0	0	1
	-	•		

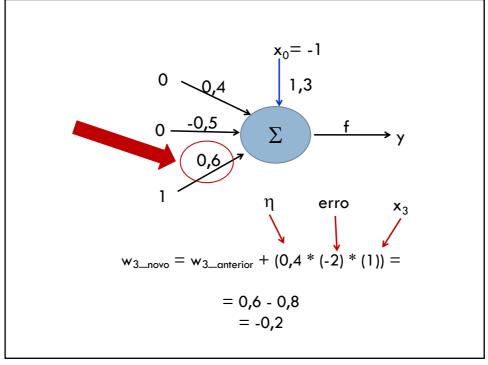
Aprendizado supervisionado

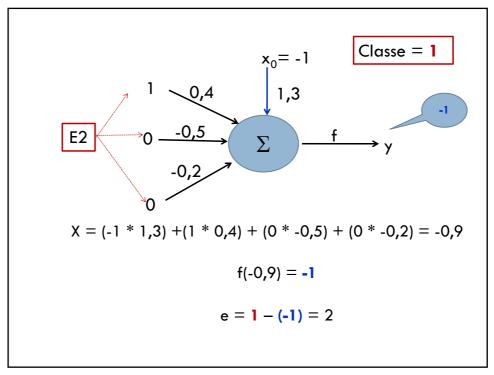
$$f(X) = \begin{cases} 1 & se \quad X \ge 0 \\ -1 & se \quad X < 0 \end{cases}$$

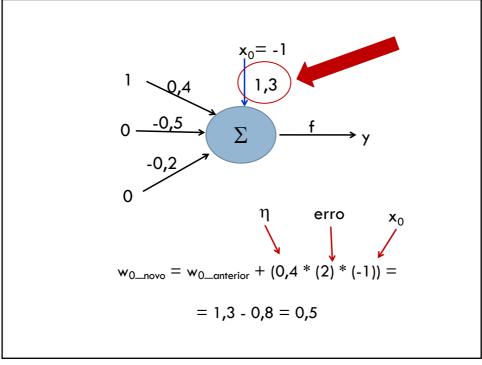


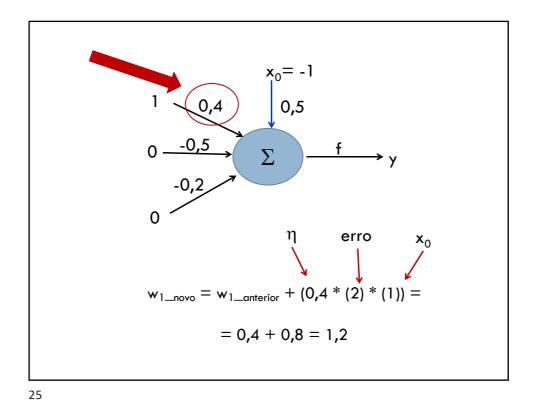


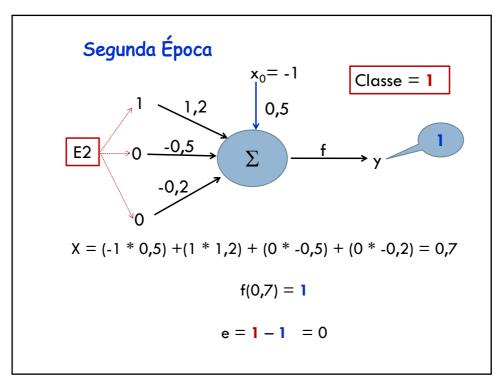




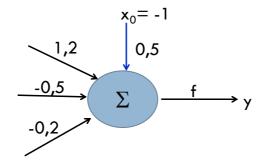








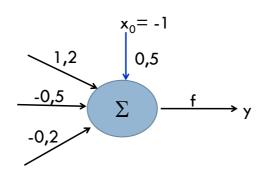
Rede final



Não ocorreram erros durante a última época.

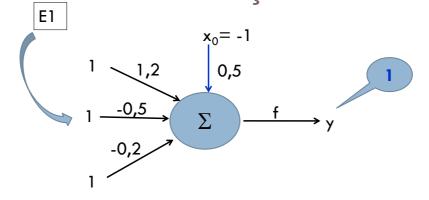
Classificação

Dado	X1	X2	x3	Classe
E1	1	1	1	ś
E2	1	1	0	ś
E3	0	1	1	ś



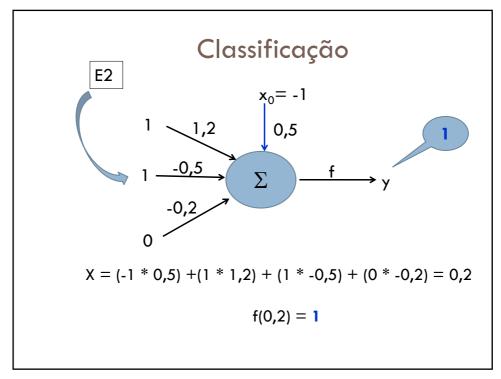
29

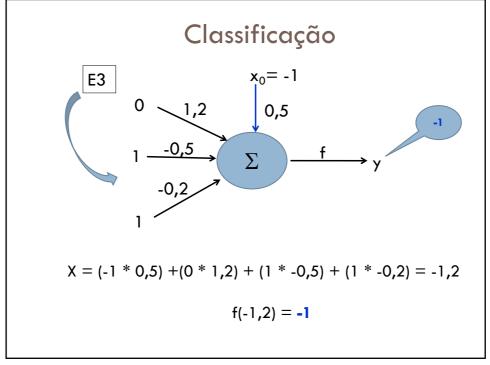
Classificação

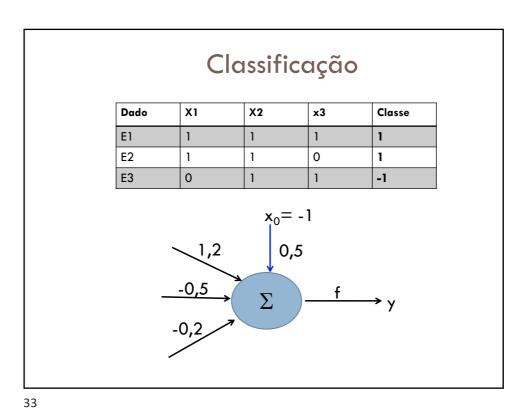


$$X = (-1 * 0,5) + (1 * 1,2) + (1 * -0,5) + (1 * -0,2) = 0$$

$$f(0) = 1$$









Prática: implementação do Perceptron

Conjunto de dados Iris

Sepal Width x Petal Width